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AbstractÐIn order to contribute to the existing knowledge of the hydrodynamic forces exerted on a
spinning spherical particle, the in¯uence of combined shear and rotation on the lift, drag and torque is
numerically investigated. The Navier±Stokes equations are solved using a ®nite volume formulation
based on a pressure correction procedure. The accuracy of the numerical code is tested through com-
parison with theoretical results at small Reynolds numbers and with accepted numerical and experimen-
tal results for a uniform ¯ow at moderate Reynolds numbers. The study is resticted to Reynolds
numbers Rep (based on sphere radius) up to 20, dimensionless shear rates ÿ0.3Rw+R+ 0.3 and
dimensionless angular velocities ÿ2Ro+R+ 2. At small Reynolds numbers, it is found that the lift
force on a spinning sphere in a linear shear ¯ow can be obtained by superposing Sa�man's or
McLaughlin's results and Rubinow and Keller's results. Compared with the case of uniform ¯ow, the
drag is slightly a�ected by the shear rate, but is not altered by the rotation of the sphere, provided that
the characteristic Reynolds numbers be small enough. At higher Reynolds numbers, the numerically
predicted drag and lift coe�cients were found to be signi®cantly a�ected by the grid parameters, so
that reliable results are restricted to the torque, which has not been studied by any author yet at par-
ticle Reynolds numbers exceeding unity. A correlation for the torque coe�cient versus the parameters
Rep, w

+ and o+ is ®nally proposed. # 1998 Elsevier Science Ltd. All rights reserved
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1 . INTRODUCTION

Studies concerning the numerical simulation of two-phase ¯ows have become more and more

important in recent years and signi®cant progress has been made on the prediction of such

¯ows. Among them, the ¯uid±solid suspension ¯ows, which are important for many industrial

application, are often predicted by means of so-called Lagrangian simulation techniques, which

are based on the computation of a large number of particle trajectories. In some kinds of con-

®ned suspension ¯ows, solid particles may undergo signi®cant transverse forces, due to the col-

lision induced spinning motion and to the large ¯uid velocity gradient in the near-wall region.

In order to carry out trajectory computations in such ¯ows, it is thus necessary to know the

force and the torque undergone by the particles, which are of decisive importance. It was there-

fore decided to investigate the force and the torque acting on spherical particle under in¯uence

of both spin and shear. Generally, the particles are not spherical and their shape undoubtedly

a�ects the forces which act on them. Nevertheless, the sphere is the only shape for which results

can be generalized without regard to attitude and it is therefore the natural choice for

investigation.

In reviewing the literature, it can be seen that only few works deal with the problem of a spin-

ning sphere that translates in a shear ¯ow. The ®rst results concerning the forces exerted by the

¯uid on a spherical particle in a non-uniform steady ¯ow were obtained by Faxen (see

Feuillebois, 1980) by neglecting the inertia terms. Bretherton (1962) proved that if such inertia

terms are neglected, no transverse force can exist for a body of revolution in a unidirectional

¯ow. Rubinow and Keller (1961) and Sa�man (1965, 1968) both used asymptotic expansions to

Int. J. Multiphase Flow Vol. 24, No. 4, pp. 563±585, 1998
# 1998 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0301-9322/98 $19.00+0.00PII: S0301-9322(97)00082-7

{To whom correspondence should be addressed.

563



obtain inertial corrections for small values of the Reynolds number in the case of a solid sphere

in an unbounded ¯ow domain. Sa�man (1965, 1968) derived an expression for the lift force on

a small sphere in a linear shear ¯ow.This expression is valid when the three Reynolds numbers

de®ned by Rep � aV=v, Rew � a2jwj=v and Reo � a2jo j=v satisfy the conditions:

Rep � Re1=2w � 1 and O�Reo � � O�Rew�, �1�
where a denotes the particle radius, v is the ¯uid viscosity, w is the velocity gradient, o is the

angular velocity and V denotes the magnitude of the particle slip velocity, which refers to the

sphere centre velocity relative to the undisturbed ¯uid velocity at that point. Sa�man's theory,

which shows that the rotation induced lift force is an order of magnitude lower than the shear

induced lift force if [1] is full®lled, was recently extended by McLaughlin (1991). He investigated

other cases in which the particle Reynolds number Rep based on the slip velocity is comparable

with or larger than the square root of the Reynolds number Rew based on the velocity gradient.

Both of these Reynolds numbers are small in magnitude compared with unity. More recently,

Cherukat et al. (1994) experimentally studied the shear-induced inertial migration of a rigid

sphere using a homogeneous shear apparatus. Their experimental results, obtained for a range

of slip Reynolds numbers Rep=0.1±2.5 indicate that McLaughlin's expression for the inertial

lift, which reduces to Sa�man's expression for large values of the parameter x= Rew
1/2/Rep,

may be used to predict the lift force when Rep<1.

The above analyses are restricted to small particle Reynolds numbers. Auton (1987) has de-

rived an expression of the lift force on a sphere in a weak shear ¯ow of an inviscid ¯uid when

the change in the incident velocity of the undisturbed ¯ow ®eld across the sphere is small com-

pared with the relative velocity of the sphere. At moderate particle Reynolds numbers Rep, ran-

ging up to 50, Dandy and Dwyer (1990) performed a numerical calculation of the lift and drag

forces on a ®xed sphere in a shear ¯ow. Their results concerning the lift have been correlated by

Mei (1992) who proposed an approximate relationship for the shear lift force on a spherical par-

ticle by expressing the lift coe�cient at ®nite Reynolds numbers in terms of the theoretical lift

coe�cient of Sa�man. Nevertheless, the numerical calculations of Dandy and Dwyer (1990)

must be interpreted with caution since the accuracy of their lift predictions was checked by com-

paring their results at small Reynolds numbers to the solution of Sa�man, whithout meeting the

conditions given above by [1]. For such a comparison, they considered the case Rep=0.05 and

six values of the dimensionless shear rate w+=aw/V: 0.01, 0.025, 0.05, 0.1, 0.2 and 0.4. When we

calculate, for instance, Rew for w+=0.025, we ®nd that Rep>Re1=2w (Rew is related to Rep by

Rew=w+Rep). It can be shown for this example that the error is 44% by comparison with the

theoretical result of McLaughlin (1991) who made the only assumption that Rep and Rew are

small compared with unity. Morever, in the study by Dandy and Dwyer (1990), the outer

boundary radius was only 25 radii of the sphere, a value which seems not to be large enough to

achieve reliable predictions at low Reynolds numbers.

It must be emphasized that the sphere rotation was not taken into account in most of the

above-mentioned works and that no information can be found concerning the torque undergone

by a sphere in a shear ¯ow at moderate Reynolds numbers. However, works dealing with the

case of a spinning sphere placed in a uniform ¯uid ¯ow can be found in the literature.

Regarding this problem, the range of small Reynolds number was theoretically investigated by

Rubinow and Keller (1961) who took into account the inertia terms in analysing the steady ¯ow

aroud a rotating sphere by the means of matched asymptotic expansions. Higher-order expan-

sions were derived by Takagi (1974), but such expansions diverge quickly as soon as Rep exceeds

unity. At ®nite Reynolds numbers, this problem was numerically investigated by Chegroun

(1992) who computed the drag, lift and torque coe�cients of a translating and spinning sphere

in the range of particle Reynolds numbers Rep up to 20. Her numerical results have been com-

pared with good agreement to the measurements of Oesterle and Bui Dinh (1998) who used a

trajectography technique to investigate the problem in the range of particle Reynolds numbers

0RRepR65.
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To the best of the authors' knowledge, it can be concluded that there is no expression avail-
able as yet for the lift and drag forces and for the torque exerted on a spinning particle in a
shear ¯ow. In this paper, we propose a numerical study of such a problem in restricting our-
selves to the case of a spinning spherical particle suspended in a uniform unbounded linear
shear ¯ow in the range RepR20. The text will be divided into three parts. The formulation of
the problem is presented in the ®rst part. The second part is devoted to the description of the
outlines of the numerical procedure. In the third part, the accuracy of the numerical technique
is tested by comparing our results with accepted ones in the literature and original results, con-
cerning mainly the dimensionless torque, which was not studied by any author yet, are presented
and discussed.

2 . PROBLEM FORMULATION

We consider the steady motion of a solid sphere in a linear shear ¯ow. The spherical particle
is assumed to be rigid so that it has a no-slip surface. It is convenient to state the problem in a
frame of reference moving with the particle, so that the ¯uid velocity is time-independent. The
undisturbed ¯uid velocity is described by:

V1�x� � �V � wx�k, �2�
where k is the unit vector of the z-direction, w is a constant shear rate and V is the undisturbed
constant ¯uid velocity at the sphere centre, which is located at x = 0. As shown by ®gure 1,
which schematizes the problem, the angular velocity of the sphere, which is also constant, is
assumed to be orthogonal to the directions of the ¯ow and of the velocity gradient and can thus
be written as:

OOO � o j, �3�
where j is the unit vector in the y-direction. The sphere Reynolds numbers considered in this
work lie in the range RepR20, so that the ¯ow is described by the full Navier±Stokes equations,
which are written, with the connected boundary conditions, in a spherical polar coordinate sys-
tem. In steady-state conditions, these equations can be expressed under the following conserva-
tive form:

1

r2
@�r2F�
@r
� 1

r sin y
@�G sin y�

@y
� 1

r sin y
@H

@f
� S, �4�

where S is the source vector and F, G and H are the ¯ux vectors. These vectors are expressed in
terms of the unknowns of the problem, which are the velocity components (u, v, w) and the
pressure p, by:

Figure 1. Problem geometry.
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In addition, the velocity components must satisfy the continuity equation:

1

r22

@

@r
�r2u� � 1

r sin y
@

@y
�v sin y� � 1

r sin y
@w

@f
� 0: �9�

The above equations are written in a dimensionless form by using the radius a of the spherical
particle as a characteristic length, the centreline velocity V as a characteristic velocity and rV2

as a pressure scale:

r � r 0

a
, u � vr

V
, v � vy

V
, w � vf

V
, p � p 0

rV 2
, �10�

where vr, vy and vf are the dimensional components of the velocity vector in the curvilinear
coordinate system, r' is the actual polar radius of the particle, p' is the actual pressure and r is
the ¯uid density.

The velocity boundary condition at in®nity, i.e. at the outer boundary of the computational
domain, is:

Vÿÿÿ4V1 as rÿÿÿ41, �11�
and the no-slip condition at the sphere surface is given by

V � OOO� r at r � 1: �12�

Because of the symmetry against the xz-plane, we will consider only the half of the compu-
tational domain, i.e. 0RyRp and 0RfRp. It is therefore necessary to write the boundary
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conditions for y = 0, y= p, f = 0 and f = p. The symmetry implies that:

@u

@f
� @v

@f
� w � 0 for f � 0 and f � p, �13�

and that the velocity component normal to the symmetry plane must vanish for all f on the
axis, leading to

v sin f� w cos f � 0 for y � 0, �14�

ÿv sin f� w cos f � 0 for y � p: �15�
Moreover, for y = 0 and y = p (i.e. on the z-axis), the radial velocity component u is directed

by the z-direction and is therefore independent of f, so that we have:

@u

@f
� 0 for y � 0 and y � p: �16�

3. METHOD OF SOLUTION
3.1. Grid

In order to obtain solutions for V(r, y, f) and p(r, y, f), the governing equations are discre-
tized on a spherical staggered grid, which is uniform in the angular directions, but non-uniform
in the radial direction. In order that the mesh width be ®ne enough near the sphere surface,
where the velocity gradient is expected to be the steepest, the grid spacing in the radial direction
is increasing towards the outer boundary of the ¯ow, according to the following exponential law:

ri � exp��i ÿ 1�h�; i � 1, ni, �17�

Dri � ri ÿ riÿ1 � ri�1ÿ eÿh�; i � 2, ni, �18�
where h denotes a dimensionless space step parameter. The internode spacing is constant in the y
and f directions, the node coordinates being de®ned by:

yj �
�
j ÿ 3

2

�
Dy; j � 2, nj, �19�

fk �
�
kÿ 3

2

�
Df; k � 2, nk �20�

where Dy and Df are the angular steps

Dy � p
nj ÿ 1

, Df � p
nk ÿ 1

�21�

The unknown pressures pi,j,k are located at the centre of the control volumes:

pi,j,k � p

�
ri ÿ Dri

2
, yj , fk

�
, �22�

whereas the components of the velocity vector are located at the centre of the control volume
faces that are normal to them

ui,j,k � u�ri,yj, fk�, �23�

vi,j,k � v

�
ri ÿ Dri

2
, yj � Dy

2
, fk

�
, �24�

wi,j,k � w

�
ri ÿ Dri

2
, yj, fk �

Df
2

�
: �25�
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3.2. Numerical procedure

Computation is performed by means of a ®nite volume approach based on a pressure correc-
tion procedure. The momentum equations are discretized by integration of [4] on the appropri-
ate staggered control volumes. The discretized equations are then solved through a line-by-line
technique, after the convection terms have been linearized using the best available estimates of
the velocity components, yielded by the previous iteration. These tentative values do not satisfy
the mass conservation since computation is not started with the exact pressure ®eld. Therefore,
after each iteration, the velocity and pressure ®elds are approximately corrected by solving the
pressure correction equation using the Simplex approach described by van Doormaal and
Raithby (1985) in order that the resulting velocities and pressures ensure satisfaction for both
momentum and continuity equations. This procedure is repeated until convergence is achieved.
It is well known that the convection terms may be the source of numerical instabilities when the
Peclet number becomes too large. In order to avoid such a problem, which may occur far from
the sphere, where the internode spacing becomes more and more greater, a power-law scheme is
used for the discretization of the convection terms (Patankar 1980). As is common when using a
staggered grid, ®ctitious velocity components are calculated outside the computation domain in
order to satisfy the boundary conditions.

Once converged velocity and pressure ®elds have been obtained for speci®ed values of the
¯ow parameters (which are the three Reynolds numbers Rep, Rew and Reo, linked by the dimen-
sionless shear rate w� � aw=V and the dimensionless angular velocity o� � ao=V), the dimen-
sionless force exerted by the ¯uid on the sphere, obtained by dividing the actual force by
1
2rV

2pa2, is computed by integrating the viscous and pressure stresses over the surface of the
sphere:

F� � 4

p

�y�p
y�0

�f�p
f�0

�
t� ÿ pd�

�
nr sin y dy df �26�

taking into account that on the sphere surface, r � 1, @u=@f � 0 and @u=@y � 0. The drag and
lift coe�cients, which correspond, respectively, to the z- and x-directions, are given by:
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sin f

��
� sin y dy df: �28�

The torque experienced by the sphere, which is directed by j , is computed by integrating the
moment, at the centre of the sphere, of the viscous surface forces. As for the lift and drag
forces, @u=@y � @u=@f � 0 for r � 1, so that the following expression is ®nally obtained, where
the torque is non-dimensionalized by 1/2rV2pa3:

CT � ÿ 4

pRep

�y�p
y�0

�f�p
f�0

�
@

@r

�
w

r

�
cos y sin fÿ @

@r

�
v

r

�
cos f

�
sin y dy df: �29�

4. RESULTS AND DISCUSSION

4.1. Accuracy and grid sensitivity

The accuracy of the numerical technique used here was tested by comparing the computed
¯ow pattern, as well as the drag, lift and torque coe�cients, with available results in speci®c
¯ow con®gurations. In addition, grid checks have been carried out in order to study the in¯u-
ence of the number of grid points and of the location of the outer boundary.
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At small Reynolds numbers, our results were compared with the theoretical ones according to
Rubinow and Keller (1961) for a spinning sphere in a uniform ¯ow and given by the following
relationships:

CD � 12

Rep

�
1� 3

8
Rep

�
, �30�

CL � ÿ2o��1�O�Rep��, �31�

CT � ÿ 16o�

Rep
�1� o�Rep��, �32�

where o+ is the dimensionless angular velocity de®ned by o� � ao=V.
Examples of numerical results, as shown by table 1 for Rep=5� 10ÿ4, o+=1 and w+=0, can

be seen to be very satisfactory for such low Reynolds number ¯ow cases: lift and drag are pre-
dicted within 2±3% and the torque value is obtained with an accuracy of 0.4%. Morever, it can
be observed that the location of the outer boundary (radius rmax) and the grid parameters have a
very slight in¯uence on the computed coe�cients. Manipulating the grid spacing in the angular
directions has only a little e�ect on the values of the lift, drag and torque coe�cients. It should
be mentioned, however, that a very large value of rmax is needed for such a low Reynolds num-
ber. At higher Reynolds number, this value may be reduced without loss of accuracy.

At moderate Reynolds numbers, the accuracy of the numerical method is checked through
comparison with the available results in the literature for the case of a non-rotating sphere in a
steady uniform ¯ow. For this purpose, drag coe�cients are computed at o+=0 for Reynolds
numbers between 0.1 and 20 and compared with the values yielded by the correlation of Morsi
and Alexander (1972), which gives the best available ®t with standard curve values. The result
of such a comparison is illustrated by ®gure 2. A very good agreement can be observed between

Table 1. Comparison between theoretical and computed values of CL, CD and CT at Rep=5�10ÿ4, o+=1 and w+=0

Grid parameters Theoretical coe�cients Computed coe�cients

h ni nj=nk rmax CL CD CT CL CD CT

0.12 50 20 358 ÿ2 24 004 ÿ32 000 ÿ2.05 24 676 ÿ31 872
0.1 58 22 299 ÿ2 24 004 ÿ32 000 ÿ2.04 24 641 ÿ31 870

Figure 2. A comparison between the predicted drag coe�cients (symbols) and the values taken from
the correlation of Morsi and Alexander (1972) (solid line).

SHEAR FLOW AROUND A SPINNING SPHERE 569



the numerically calculated drag coe�cients and the experimental ones. In addition, properties of
the recirculation wake, such as the separation Reynolds number and the wake length, can be
compared with published results. Taneda (1956) observed the phenomenon of separation at
Rep=12. Measurements by Payard and Coutanceau (1974), however, do not agree with
Taneda's result since they found that a wake existed behind the sphere as soon as Rep=8.5.
Another result concerning the recirculation wake is given by Dennis and Walker (1971), who
obtained numerically a separation for Rep310. In the present study, the separation was
detected for 10RRepR12, in good agreement with the results of Taneda (1956) and Dennis
and Walker (1971). Figure 3 shows the computed velocity ®eld and streamline pattern for

Figure 3. Flow ®eld at Rep=20 and Reo=Rew=0: (a) velocity ®eld; (b) streamlines.
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Rep=20. The corresponding predicted eddy length is 0.56 radii. This value lies between the esti-
mations of Payard and Coutanceau (1974) and Dennis and Walker (1971), who obtained, re-
spectively, 0.5 and 0.6 radii at the same Reynolds number.

In case of a linear shear ¯ow, the numerical results can be compared with the theoretical ones
under the conditions of Sa�man (1965, 1968) or McLaughlin (1991). As shown by table 2,
which provides an illustration of the in¯uence of both the outer boudary location and the grid
density on the computed values of CL, CD and CT, for Rep=5� 10ÿ4 and w+=0.1, the lift coef-
®cient can be seen to be strongly in¯uenced by the outer radius rmax, thus making it di�cult to
obtain reliable lift predictions when shear is present.

However, for such a small value of Rep, better results would have been expected in increasing
the radius of the computational domain since the Oseen region, whose radius is O�Reÿ1p �,
extends to rmax12000. Unfortunately, larger values of rmax were found to unavoidably lead to
numerical divergence, presumably because of the very high (and physically meaningless) outer
boundary velocity, whose dimensionless value reaches 1 + w+rmax on the x-axis. By choosing a
higher value of the Reynolds number in order to reduce the Oseen radius, the same problem
arises since we have to select a higher value of w+ for the Sa�man conditions to be met. This
has been con®rmed by further tests performed at Rep=5�10ÿ2, for which a value of w+ of order
of 1 is needed: in this case, no convergence could be obtained for rmax>27 and the predicted lift
coe�cient was still very sensitive to the outer boundary location. Such a grid sensitivity for the
lift coe�cient was also mentioned by Dandy and Dwyer (1990). On the contrary, the computed
torque and drag coe�cients appear to be negligibly in¯uenced by the choice of the outer bound-
ary radius and grid parameters, although they are slightly overestimated (about 4%).

Nevertheless, it must be mentioned that the in¯uence of the grid parameters on the velocity
and pressure ®elds is not noticeable, as can be seen in ®gures 4 and 5, which display the velocity
®eld, streamline pattern and pressure ®eld obtained for two di�erent grids and for the same
values of Rep and w+. The in¯uence of the grid parameters has also been tested at higher
Reynolds numbers. Although satisfactory results were obtained in uniform ¯ow, it was found
that the lift coe�cient is signi®cantly a�ected by the grid parameters as soon as shear ¯ow is
considered. The torque coe�cient and the ¯ow pattern, however, are not observed to be in¯u-
enced by the grid parameters.

From these preliminary tests, it may be concluded that the present study can provide reliable
results regarding the ¯ow pattern and the torque coe�cient. In addition, some information
about the combined e�ects of shear and spin on the lift and drag coe�cients, at small Reynolds
numbers, will be given in adopting, for each value of the shear Reynolds number Rew, the grid
parameters which led to the best agreement with the theoretical lift at o+= 0 according to
McLaughlin (1991).

4.2. Flow pattern

It may be interesting to examine the modi®cations induced in the ¯ow structure by the sphere
rotation and by the shear. The typical value of the particle Reynolds number considered here is
Rep=20 and the dimensionless shear rates are w+=0.025, w+=0.05 and w+=0.20. Velocity
®elds, stream lines and pressure ®elds in the symmetry plane, which is orthogonal to the rotation
axis, are plotted in ®gures 6±10. Streamlines were obtained by numerically following the trajec-

Table 2. In¯uence of outer boundary location and grid density on CL, CD and CT at Rep=5�10ÿ4, o+=0 and w+=0.1

ni nj=nk h rmax CL CD CT

48 20 0.09 69 24.6 25 142 ÿ1672
48 20 0.1 110 56 24 920 ÿ1673
53 20 0.09 110 54.3 24 870 ÿ1673
68 20 0.07 110 55.6 24 750 ÿ1673
48 22 0.1 110 55.5 24 925 ÿ1671
48 24 0.1 110 55.2 24 930 ÿ1669
56 24 0.1 244 39 24 773 ÿ1679

Theoretical values4 58.2 24 005 ÿ1600
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Figure 4. Flow pattern, in the symmetry plane x±z, at Rep=5� 10ÿ4, Reo=0 and Rew=5� 10ÿ5

(w+=0.1). Grid parameters: ni=48, nj=20, nk=20, rmax=110. (a) Velocity ®eld; (b) streamlines; (c)
pressure ®eld (numbers refer to the values of the dimensionless pressure).



Figure 5. Flow pattern, in the symmetry plane x±z, at Rep=5� 10ÿ4, Reo=0 and Rew=5� 10ÿ5

(w+=0.1). Grid parameters: ni=56, nj=24, nk=24, rmax=244. (a) Velocity ®eld; (b) streamlines; (c)
pressure ®eld (numbers refer to the values of the dimensionless pressure).
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Figure 6. Flow pattern, in the symmetry plane x±z, for Rep=20, w+=0.025 and o+=0: (a) velocity
®eld; (b) streamlines; (c) pressure ®eld (numbers refer to the values of the dimensionless pressure).
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Figure 7. Flow pattern, in the symmetry plane x±z, for Rep=20, w+=0.05 and o+=0: (a) velocity
®eld; (b) streamlines; (c) pressure ®eld (numbers refer to the values of the dimensionless pressure).
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Figure 8. Flow pattern, in the symmetry plane x±z, for Rep=20, w+= 0.20 and o+= 0: (a) velocity
®eld; (b) streamlines; (c) pressure ®eld (numbers refer to the values of the dimensionless pressure).

M. B. SALEM and B. OESTERLEÂ576



Figure 9. Flow pattern, in the symmetry plane x±z, for Rep= 20, w+= 0.20 and o+=ÿ1: (a) velocity
®eld; (b) streamlines; (c) pressure ®eld (numbers refer to the values of the dimensionless pressure).
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Figure 10. Flow pattern, in the symmetry plane x±z, for Rep= 20, w+= 0.20 and o+=+1: (a) velocity
®eld; (b) streamlines; (c) pressure ®eld (numbers refer to the values of the dimensionless pressure).
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tories of equally spaced tracers upstream of the sphere and additional trajectories have been
computed in order to visualize the recirculation when necessary.

In order to examine the in¯uence of shear in the absence of spin, ®gures 6±8 may be com-
pared with ®gure 3. At low shear rates, as shown by ®gures 6 and 7, the forward stagnation
point is slightly shifted towards the low-velocity side and closed streamlines exist at the rear of
the sphere. However, even though a separation still takes place on the upper surface, the upper
recirculating eddy has disappeared. The size of the remaining eddy is seen to decrease with
increasing shear rate (®gures 6 and 7), until it vanishes completely, for a value of w+ comprised
between 0.05 and 0.1. At higher shear rate, as illustrated by ®gure 8 (w+= 0.20), the upstream
stagnation point is slightly displaced towards the high-velocity side and there is now only one
separation point (in the symmetry plane) at the rear of the sphere, which is located on the upper
portion of the sphere surface. Such observations are very similar to the behaviour reported by
Dandy and Dwyer (1990) for a higher value of the Reynolds number (Rep=35). In this case,
the recirculating eddy was found by these authors to be shifted towards the low-velocity side of
the sphere for low values of the shear rate and to disappear for w+> 0.2.

Owing to the velocity gradient of the undisturbed ¯ow, the velocity is seen to signi®cantly
increase from the bottom to the top of the ®gure, leading to larger wall shear stresses on the
upper side of the sphere, which undergoes therefore a torque in the clockwise direction. The
asymmetry due to the shear has obviously consequences for the pressure ®eld: ®gure 8(c) shows
that the pressure is lower on the top of the sphere, where the velocity is higher, as could be
expected. Besides the resulting lift force, the modi®ed pressure and shear stress distributions
may possibly alter the drag force.

In case of sphere rotation, there is only one stagnation point, the location of which is dis-
placed at a distance of the sphere surface, due to the no-slip condition which leads to the pre-
sence of a rotating layer close to the sphere surface. This can be seen in examining the
streamlines in ®gures 9 and 10, which refer to opposite rotation directions. In ®gure 9, the ¯uid
motion is enhanced by the peripheral velocity in the upper region of the ¯ow, so that the stag-
nation point is located on the low velocity side of the ¯uid ¯ow. This leads to a strong decrease
of the pressure on the top of the sphere, as shown by ®gure 9(c). On the contrary, the stagna-
tion point is located in the upper region of the ¯ow when o+ is positive (®gure 10) and in this
case the minimal pressure is not so low as in the previous case, as can be observed in
®gure 10(c). In both cases, the angular velocity may be expected to have an important in¯uence
on the torque, owing to the high shear stress produced at the sphere surface by the rotational
motion.

4.3. Lift and drag at small Reynolds number

An example of results concerning the lift coe�cient at small Reynolds numbers is displayed in
®gure 11, where CL is plotted as a function of the shear Reynolds number Rew, for several
values of the dimensionless angular velocity o+, at a ®xed value of the particle Reynolds num-
ber, namely Rep=0.05. The theoretical results of Sa�man (1965, 1968) and McLaughlin (1991)
for o+=0 are also plotted in this ®gure, in order that the corresponding computed lift coe�-
cients can be compared with the theoretical ones. It must be pointed out that Sa�man's con-
ditions, given by [1], are not satis®ed in the range of Reynolds numbers and dimensionless shear
rates investigated here, thereby the only valid theoretical result is Mclaughlin's one, with which
the numerically predicted lift coe�cients at o+=0 can be observed to be in very close agree-
ment. Furthermore, it may be noted that the values of CL in uniform ¯ow (Rew) are in accord-
ance with the theoretical result of Rubinow and Keller (1961), namely CL=2o+. Results
regarding the lift of a spinning sphere in uniform ¯ow at higher Reynolds numbers will be pre-
sented and discussed in a forthcoming paper.

Although the lift is known to arise from inertia e�ects, i.e. from the non-linear behaviour of
the equations of motion, ®gure 11 shows that a good approximation is provided by adding the
theoretical lift of a ®xed sphere in a shear ¯ow (according to McLaughlin 1991) and the theor-
etical lift of a spinning sphere placed in a uniform ¯ow (Rubinow and Keller 1961). This can be
explained by the fact that the inertial terms are nevertheless very small compared with the vis-
cous ones for such low Reynolds numbers. As a consequence, it can be concluded that the lift
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force on a spinning sphere in a linear shear ¯ow can be obtained by superposing McLaughlin's
results and Rubinow and Keller's results, provided that the characteristic Reynolds numbers be
small enough.

Results regarding the drag coe�cient at small Rep are represented in ®gure 12, which is a plot
of the ratio CD/CDO (CDO being the Oseen's drag coe�cient for uniform ¯ow) as a function of
o+ for several values of the dimensionless shear rate w+. It can be seen that the drag is slightly
increasing with increasing shear rate, as has already been observed by Yamamoto et al. (1993),
who studied the lift and drag applied to a sphere in a high Reynolds number linear shear ¯ow.

Figure 11. A plot of the lift coe�cient at Rep=0.05 as a function of the shear Reynolds number Rew
for several values of o+. The thin solid lines are obtained by adding the theoretical solutions of

McLaughlin (1991) and of Rubinow and Keller (1961).

Figure 12. The ratio CD/CDO as a function of o+ at Rep=0.05, for several values of w+ (CD0 is the
Oseen's drag coe�cient for uniform ¯ow).
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It is also interesting to note that the drag is not altered by the rotation of the sphere at such
low Reynolds numbers.

4.4. Torque

The results reported here relate to the torque coe�cient CT, which was found to be insensitive
to the grid parameters and which was not studied, under the in¯uence of both shear and spin,
by any author yet. At ®rst, let us examine the in¯uence of both spin and shear on the torque
coe�cient at small values of the sphere Reynolds numbers. Examples of results obtained at
o+=1, Rep=Reo=0.05 and Rep=Reo=0.5, are presented in ®gure 13, which displays the ratio
CT/CTO as a function of w+ (CTO being the torque coe�cient at w+= 0). The theoretical analy-
sis of Rubinow and Keller 1961) is valid for such low values of Reynolds numbers Rep and
Reo, provided that w+= 0 (uniform ¯ow). In the case w+$0, some authors used the Rubinow
and Keller's relationship in replacing the sphere angular velocity o by o + w/2, which is the
relative angular velocity with respect to the ¯uid rotation velocity. It can be seen from ®gure 13
that such a simpli®cation, which is only valid under creeping ¯ow conditions, as shown by
Faxen, leads to a slight underestimation of the torque coe�cient. Let us recall that Faxen's for-
mula may be written as follows:

CT�Faxen� � ÿ 16

Rep

�
o� � w�

2

�
, �33�

Before presenting the e�ect of simultaneous shear and rotation at moderate Reynolds num-
bers Rep, ranging up to 20, it is more useful to examine ®rst the numerical results concerning
the shear induced torque coe�cient, i.e. without spin. In this case, the Faxen's formula [33]
shows that the dimensionless torque under creeping ¯ow conditions is proportional to the
dimensionless shear rate and inversely proportional to the sphere Reynolds number. In order to
study the in¯uence of both parameters Rep and w+ at higher Reynolds numbers, the computed
values of the ratio CT�o�0�=w� are plotted, in ®gure 14, as a function of Rep and are compared
with the theoretical result of Faxen given by [33]. It can be seen that Faxen's formula underesti-
mates the torque coe�cient in the range of Reynolds numbers investigated herein (Repr0.5)
and that the ratio CT�o�0�=w� is depending on w+, even at Rep=0.5. The deviation from low
Reynolds number theory is found to be signi®cantly increasing for Repr10. As shown by
®gure 15, such a behaviour may be depicted by the following modi®ed expression of the torque
coe�cient, which is a correlation of the present numerical results:

Figure 13. The torque coe�cient as a function of w+ for small Reynolds numbers (o+=1). The dotted
line refers to the torque obtained by replacing the absolute sphere angular velocity o by the relative vel-

ocity o+ w/2 in the formula of Rubinow and Keller.
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CT�o�0� � ÿ 8

Rep
�w��0:9

�
1� 1:3� 10ÿ4Re2p�w��ÿ0:7

�
: �34�

The relative torque increment �DCT=CT��o�0�, where DCT is de®ned by DCT=CTÿCT(Faxen),
may reach very high values at low shear rate. In the present calculations, the maximum devi-
ation from Faxen's formula, obtained for Rep=20 and w+=0.025, is �DCT=CT��o�0�=137%.
Although there is no evidence of connection between such a notable inertia e�ect and the

Figure 14. Predicted values of the torque coe�cient in case of zero angular velocity, illustrated by the
ratio CT/w

+ as a function of Rep for several values of the dimensionless shear rate w+. The solid line
refers to Faxen's formula [33].

Figure 15. Comparison between the proposed correlation [[34], represented by lines] and the computed
values (marks) of the shear induced torque coe�cient CT(o = 0).
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observed ¯ow pattern, a possible explanation of the torque increase at low shear rate lies in the
upper eddy disappearing, which leads to a decrease of the in¯uence of the wall shear stress on
the lower portion of the sphere surface.

In case of a spinning sphere, it may be mentioned ®rst that the torque due to spin in a uniform
¯ow (w+=0) was found to agree well with the theoretical ®nding of Rubinow and Keller [32] in the
range of Reo investigated herein. This means that the spin induced torque seems to be much less
sensitive to inertia e�ects than the shear induced torque. In the presence of both shear and spin, the
torque coe�cient was computed for several values of o+ and w+, in the rangesÿ2Ro+R+ 2 and
0Rw+R+ 0.3. The corresponding ranges of the shear and rotation Reynolds numbers are RewR6
and ReoR40. In spite of the moderately high values of the particle Reynolds numbers, implying
that the inertial terms in the equations of motion are no longer negligible, it was observed that the
torque coe�cient CT could be approximated by adding the torque coe�cient due to the spinning
motion of the sphere in a uniform ¯ow and the shear induced torque coe�cient without spin as
given by the above proposed correlation [34]. As a consequence, the following correlation,
obtained by adding the torque coe�cient expressions [32] and [34], is ®nally proposed:

CT � ÿ 16

Rep

�
o� � 1

2
�w��0:9 � 6:5� 10ÿ5Re2p�w��0:2

�
: �35�

This result can easily be extended to negative shear rates in the range ÿ0.3Rw+R0, in replacing
w+ by jw�j and changing the sign of the two last terms. An illustration of the proposed correlation,
which is valid in the aforementioned ranges of ¯ow parameters, is provided by ®gure 16, where the
numerically computed torque coe�cients are plotted versus the correlated values of CT according
to [35], for several values of particle Reynolds number, dimensionless shear rate and dimensionless
angular velocity. [35] can be seen to adequately describe the numerically predicted torque in a
range of ®nite Reynolds numbers, 0.5RRepR20, which are frequently encountered in gas±solid
or liquid±solid two-phase ¯ows.

5. CONCLUSION

Numerical solutions have been obtained for the steady linear shear ¯ow past a rotating sphere
in the range of particle Reynolds numbers based on sphere radius RepR20, dimensionless shear

Figure 16. Illustration of [35].
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rates ÿ0.3Rw+R0.3 and dimensionless angular velocities ÿ2Ro+R+ 2. The full Navier±
Stokes equations have been solved using a ®nite volume formulation based on a pressure correc-
tion procedure. Original results concerning the ¯ow pattern, the lift and drag forces and mainly
the torque, which was not studied by any author yet, have been presented.

Examination of the ¯ow pattern has shown an important e�ect of the shear at the rear of the
sphere. In particular, in the absence of rotation, at Rep=20, the recirculating region, which is
known to exist in a uniform ¯ow, has been found to be signi®cantly reduced at low shear rate
and to vanish for w+r0.1. The recirculating eddy also disappears in case of sphere rotation,
due to the no-slip condition, which leads to the presence of a rotating layer close to the sphere
surface.

The lift and the drag coe�cients were found to be signi®cantly sensitive to the grid par-
ameters in case of shear ¯ow, so that reported results have been restricted to small Reynolds
numbers. In this case the lift is found to be the sum of McLaughlin's shear induced lift and of
Rubinow and Keller's spin induced lift, whereas the drag is slightly increased by the velocity
gradient, but is not a�ected by the rotation of the sphere. It has also been shown that replacing
the angular velocity o by the relative angular velocity o+ w/2 in the Rubinow and Keller's
result leads to a slight underestimation of the torque.

Results concerning the torque coe�cient, which was shown not to be in¯uenced by the grid
parameters, have been extended to higher particle Reynolds numbers. For Rep ranging from 0.5
to 20, the torque due to shear has been found to be notably increased by inertia e�ects, com-
pared with the theoretical torque at small Reynolds numbers given by Faxen's formula. This
may be due to the signi®cant displacement of the downstream stagnation point towards the lar-
ger velocity side of the sphere. Inertia e�ects upon the spin induced torque in uniform ¯ow
seem to be much lower, so that the result of Rubinow and Keller (1961) may still be used for
w+=0. In the case of simultaneous in¯uences of shear and spin, the torque coe�cient was
®nally found to obey the following correlation, provided that RepR20, ÿ0.3Rw+R0.3 and
ÿ2Ro+R+ 2:

CT � ÿ 16

Rep

�
o�2

1

2
jw�j0:926:5� 10ÿ5Re2pjw�j0:2

�
where the plus signs are for positive w+ and the minus signs for negative w+.

Although further improvements of the numerical code are needed in order to achieve more re-
liable predictions of the lift and drag coe�cients, the proposed correlation may be helpful for
the computation of solid particle trajectories in con®ned ¯ows, where both particle spin and
¯uid shear have to be taken into account.
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